# Convert a LLaMA model checkpoint to a ggjt compatible file # # Load the model using Torch # Iterate over all variables and write them to a binary file. # # For each variable, write the following: # - Number of dimensions (int) # - Name length (int) # - Dimensions (int[n_dims]) # - Name (char[name_length]) # - Data (float[n_dims]) # # At the start of the ggml file we write the model parameters # and vocabulary. # import argparse import os import sys import json import struct import numpy as np import torch from sentencepiece import SentencePieceProcessor QK = 32 GGML_TYPE_Q4_0 = 0 GGML_TYPE_Q4_1 = 1 GGML_TYPE_I8 = 2 GGML_TYPE_I16 = 3 GGML_TYPE_I32 = 4 GGML_TYPE_F16 = 5 GGML_TYPE_F32 = 6 WTYPES = { 0: GGML_TYPE_F32, 1: GGML_TYPE_F16, 2: GGML_TYPE_Q4_0, 3: GGML_TYPE_Q4_1, } GGML_BLCK_SIZE = { GGML_TYPE_Q4_0: QK, GGML_TYPE_Q4_1: QK, GGML_TYPE_I8: 1, GGML_TYPE_I16: 1, GGML_TYPE_I32: 1, GGML_TYPE_F16: 1, GGML_TYPE_F32: 1, } GGML_TYPE_SIZE = { GGML_TYPE_Q4_0: 4 + QK//2, GGML_TYPE_Q4_1: 4*2 + QK//2, GGML_TYPE_I8: 1, GGML_TYPE_I16: 2, GGML_TYPE_I32: 4, GGML_TYPE_F16: 2, GGML_TYPE_F32: 4, } def ggml_nelements(shape): r = 1 for i in shape: r *= i return r def ggml_nbytes(shape, ftype): x = ggml_nelements(shape) t = WTYPES[ftype] x *= GGML_TYPE_SIZE[t] x //= GGML_BLCK_SIZE[t] return x def parse_args(): parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') parser.add_argument('dir_model', help='directory containing the model checkpoint') parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?') return parser.parse_args() def get_n_parts(dim): mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8} n_parts = mappings.get(dim) if n_parts is None: print(f"Invalid dim: {dim}") sys.exit(1) print(f"n_parts = {n_parts}\n") return n_parts def load_hparams_and_tokenizer(dir_model): # `dir_model` is something like `models/7B` or `models/7B/`. # "tokenizer.model" is expected under model's parent dir. # When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found. # Let's use the model's parent dir directly. model_parent_dir = os.path.dirname(os.path.normpath(dir_model)) fname_hparams = f"{dir_model}/params.json" fname_tokenizer = f"{model_parent_dir}/tokenizer.model" with open(fname_hparams, "r") as f: hparams = json.load(f) print(hparams) tokenizer = SentencePieceProcessor(fname_tokenizer) hparams.update({"vocab_size": tokenizer.vocab_size()}) return hparams, tokenizer def write_header(fout, hparams, ftype): keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] values = [ 0x67676a74, # magic: ggjt in hex 1, # file version *[hparams[key] for key in keys], hparams["dim"] // hparams["n_heads"], # rot (obsolete) ftype ] fout.write(struct.pack("i" * len(values), *values)) def write_tokens(fout, tokenizer): for i in range(tokenizer.vocab_size()): if tokenizer.is_unknown(i): text = " \u2047 ".encode() elif tokenizer.is_control(i): text = b"" elif tokenizer.is_byte(i): piece = tokenizer.id_to_piece(i) if len(piece) != 6: print(f"Invalid token: {piece}") sys.exit(1) byte_value = int(piece[3:-1], 16) text = struct.pack("B", byte_value) else: text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() fout.write(struct.pack("i", len(text))) fout.write(text) fout.write(struct.pack("f", tokenizer.get_score(i))) def process_and_write_variables(fout, model, ftype, part_id, n_parts): for name, datao in model.items(): if name.endswith("freqs"): continue # remove dimensions with a single element data = datao.numpy().squeeze() partshape = data.shape n_dims = len(data.shape) assert n_dims in (1, 2) print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}") # coerce single-dimensional tensors from float16 to float32 ftype_cur = 1 if ftype == 0 or n_dims == 1: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]] type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]] # determine dimension along which multipart tensor is sharded # # split_dim 0 regex: # - output.* # - layers.*.attention.wq.weight # - layers.*.attention.wk.weight # - layers.*.attention.wv.weight # - layers.*.feed_forward.w1.weight # - layers.*.feed_forward.w3.weight # # split_dim 1 regex: # - tok_embeddings.* # - layers.*.attention.wo.weight # - layers.*.feed_forward.w2.weight # if n_dims > 1: split_dim = 1 if "tok_embeddings" in name: split_dim = 1 elif "layers" in name: if "attention.wo.weight" in name: split_dim = 1 elif "feed_forward.w2.weight" in name: split_dim = 1 else: split_dim = 0 elif "output" in name: split_dim = 0 # output tensor header fullshape = list(partshape) if n_dims > 1: fullshape[split_dim] *= n_parts sname = name.encode() fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur)) for dim in reversed(fullshape): fout.write(struct.pack("i", dim)) fout.write(sname) # ensure tensor data is aligned tensor_data_offset = fout.tell() while tensor_data_offset % QK != 0: fout.write(struct.pack("B", 0)) tensor_data_offset += 1 # output unified mappable tensor data if n_dims == 1 or n_parts == 1: # copy tensor which we thankfully received in one piece if part_id == 0: data.tofile(fout) elif split_dim == 0: # reassemble multifile tensor containing some of the rows rows_per_chunk = partshape[0] current_row = part_id * rows_per_chunk bytes_per_row = fullshape[1] // blck_size * type_size offset = current_row * bytes_per_row fout.seek(tensor_data_offset + offset) data.tofile(fout) elif split_dim == 1: # reassemble multifile tensor containing some of the cols cols_per_chunk = partshape[1] current_col = part_id * cols_per_chunk bytes_per_row = fullshape[1] // blck_size * type_size offset_current_col = current_col // blck_size * type_size for row in range(partshape[0]): offset_row = row * bytes_per_row offset = offset_row + offset_current_col fout.seek(tensor_data_offset + offset) data[row].tofile(fout) # advance file position to next tensor fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur)) def main(): args = parse_args() dir_model = args.dir_model ftype = args.ftype ftype_str = ["f32", "f16"] hparams, tokenizer = load_hparams_and_tokenizer(dir_model) print(args) # if only writing vocab to file if args.vocab_only: fname_model = f"{dir_model}/consolidated.00.pth" fname_out = f"{dir_model}/ggml-vocab.bin" print(f"Extracting only the vocab from '{fname_model}'\n") with open(fname_out, "wb") as fout: write_header(fout, hparams, ftype) write_tokens(fout, tokenizer) print(f"Done. Output file: {fname_out}\n") return n_parts = get_n_parts(hparams["dim"]) fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin" # we output a single file for ggml with open(fname_out, "wb") as fout: write_header(fout, hparams, ftype) write_tokens(fout, tokenizer) offset_of_tensors = fout.tell() # the tensors we load could be split across multiple files for part_id in range(n_parts): fout.seek(offset_of_tensors) print(f"Processing part {part_id+1} of {n_parts}\n") fname_model = f"{dir_model}/consolidated.0{part_id}.pth" model = torch.load(fname_model, map_location="cpu") process_and_write_variables(fout, model, ftype, part_id, n_parts) del model print(f"Done. Output file: {fname_out}\n") if __name__ == "__main__": main()