You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
llama.cpp/convert-gptq-to-ggml.py

173 lines
6.1 KiB
Python

Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
#
import os
import re
import sys
import json
import struct
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor
if len(sys.argv) != 4:
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
sys.exit(1)
fname_model = sys.argv[1]
fname_tokenizer = sys.argv[2]
dir_out = sys.argv[3]
model = torch.load(fname_model, map_location="cpu")
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
n_layer = 1 + max(int(m.group(1)) for name in model
if (m := re.match(r'model\.layers\.([0-9]+)', name)))
# hardcoded:
n_mult = 256
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
tokenizer = SentencePieceProcessor(fname_tokenizer)
assert tokenizer.vocab_size() == n_vocab
fname_out = sys.argv[3]
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex
fout.write(struct.pack("i", 1)) # file version
Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
fout.write(struct.pack("i", n_vocab))
fout.write(struct.pack("i", n_embd))
fout.write(struct.pack("i", n_mult))
fout.write(struct.pack("i", n_head))
fout.write(struct.pack("i", n_layer))
fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
fout.write(struct.pack("i", 4))
# This loop unchanged from convert-pth-to-ggml.py:
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
def write_header(shape, dst_name, ftype_cur):
sname = dst_name.encode('utf-8')
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
# ensure tensor data is aligned
tensor_data_offset = fout.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fout.seek(tensor_data_offset)
Importer for GPTQ quantized LLaMA models (#301) * [WIP, broken] Importer for GPTQ quantized LLaMA models Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa Current status: Something is busted. The output starts out decent, but quickly degrades into gibberish. This doesn't happen with either the original GPTQ-for-LLaMa using the same weights, or llama.cpp when using weights quantized by its own quantizer. Is there a bug in the conversion script that somehow only comes into play with a large context size? I did notice one potential issue. It's clearly not the main cause of the gibberish, since it doesn't happen when using q4_1 weights quantized by llama.cpp itself, but it seems concerning. When doing a matrix multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when the multiplication is not done with BLAS, the intermediate results are stored in the smaller format rather than f32. This seems like an unnecessary waste of precision, especially in the q4_1 case. I was originally hoping to validate the results by matching the Python implementation's output exactly, but precision and non-associativity issues make this very difficult, including when performing matrix multiplications and, especially, computing norms. Anyway, design details: The models being imported store per-layer weights in essentially q4_1 format, although the addend and scale are shared across an entire row rather than every group of 32 weights. This script duplicates the addend and scale to match ggml's expectations, at the cost of wasting some memory. However, there are two differences which I accommodated changing the output format (and adding corresponding support to main.cpp) rather than having the script match the existing one: - The tok_embeddings and output weights (i.e. the weights that aren't per-layer) are f16 instead of q4_1. They could be converted to q4_1, and the impact of the loss of precision would probably be low, but this would rule out exactly matching the Python implementation's output for validation. - There is no sharding, since the input doesn't have it, and for a CPU-only implementation it seems more useful to avoid having to deal with multiple files. The new format is differentiated from existing q4_1 format by changing the 'f16' header flag to a new value, 4. That said, I think a cleaner approach would be to change main.cpp to support loading each tensor with an arbitrary sharding configuration and type rather than hardcoding specific combinations of types. So far I've wasted too much time debugging to try implementing this... * Add missing permutation. Now it works. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1 year ago
def convert_non_q4(src_name, dst_name):
v = model[src_name]
shape = v.shape
print("Processing non-Q4 variable: " + src_name + " with shape: ", shape, " and type: ", v.dtype)
if len(shape) == 1:
print(" Converting to float32")
v = v.to(torch.float32)
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
# header
write_header(shape, dst_name, ftype_cur)
# data
v.numpy().tofile(fout)
def convert_q4(src_name, dst_name, permute=False):
zeros = model[f"{src_name}.zeros"].numpy()
scales = model[f"{src_name}.scales"].numpy()
bias = model[f"{src_name}.bias"].numpy()
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
# Q4_1 does not support bias; good thing the bias is always all zeros.
assert not np.any(bias)
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
shape = (qweight.shape[0], qweight.shape[1] * 8)
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
# The output format has the int4 weights in groups of 32 rather than 8.
# It looks like this:
# For each row:
# For each group of 32 columns:
# - addend (float32, 4 bytes)
# - scale (float32, 4 bytes)
# - weights (int4 * 32, 16 bytes)
# Note that in the input, the scales and addends are shared between all
# the columns in a row, so we end up wasting quite a bit of memory with
# repeated scales and addends.
addends = -zeros # flip sign
# Since the output format is mixed between integers and floats, we have
# to hackily view the floats as int32s just so numpy will let us
# concatenate them.
addends_view = addends.view(dtype=np.int32)
scales_view = scales.view(dtype=np.int32)
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
# Repeat addends and scales:
addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
if permute:
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
# This can be done after the above conversion because it doesn't affect column order/layout.
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
.swapaxes(1, 2)
.reshape(blob.shape))
# header
write_header(shape, dst_name, 3) # ftype = Q4_1
# data
blob.tofile(fout)
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
convert_non_q4("model.norm.weight", "norm.weight")
convert_non_q4("lm_head.weight", "output.weight")
for i in range(n_layer):
convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
fout.close()
print("Done. Output file: " + fname_out)
print("")